Asymptotic Behavior of Solutions to a Degenerate Quasilinear Parabolic Equation with a Gradient Term
نویسندگان
چکیده
This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at ∞.
منابع مشابه
Convergence to separate variables solutions for a degenerate parabolic equation with gradient source
The large time behaviour of nonnegative solutions to a quasilinear degenerate diffusion equation with a source term depending solely on the gradient is investigated. After a suitable rescaling of time, convergence to a unique profile is shown for global solutions. The proof relies on the halfrelaxed limits technique within the theory of viscosity solutions and on the construction of suitable su...
متن کاملGradient Estimates for a Degenerate Parabolic Equation with Gradient Absorption and Applications
Qualitative properties of non-negative solutions to a quasilinear degenerate parabolic equation with an absorption term depending solely on the gradient are shown, providing information on the competition between the nonlinear diffusion and the nonlinear absorption. In particular, the limit as t → ∞ of the L1-norm of integrable solutions is identified, together with the rate of expansion of the...
متن کاملThe geometric properties of a degenerate parabolic equation with periodic source term
In this paper, we discuss the geometric properties of solution and lower bound estimate of ∆um−1 of the Cauchy problem for a degenerate parabolic equation with periodic source term ut =∆um+ upsint. Our objective is to show that: (1)with continuous variation of time t, the surface ϕ = [u(x,t)]mδq is a complete Riemannian manifold floating in space RN+1and is tangent to the space RN at ∂H0(t); (2...
متن کاملExistence of blow - up solutions for quasilinear elliptic equation with nonlinear gradient term
In this paper, we consider the quasilinear elliptic equation in a smooth bounded domain. By using the method of lower and upper solutions, we study the existence, asymptotic behavior near the boundary and uniqueness of the positive blow-up solutions for quasilinear elliptic equation with nonlinear gradient term.
متن کاملThe fibering map approach to a quasilinear degenerate p(x)-Laplacian equation
By considering a degenerate $p(x)-$Laplacian equation, a generalized compact embedding in weighted variable exponent Sobolev space is presented. Multiplicity of positive solutions are discussed by applying fibering map approach for the corresponding Nehari manifold.
متن کامل